亮"明"坐标折射耀眼的光

记全国五一劳动奖章获得者、河南能源焦煤公司九里山矿地测科副科长李明

百米井下,毫厘之间,他用最坚定的承诺诉说着自己对煤海的守望;一组数据,一根线条,他用最朴素的符号标注出自己奋斗的 坐标。他是李明,16 载坚守,在日复一日的观测、记录、计算、标定中践行自己的初心使命,标明自己人生的过往,"经纬"之间,筑梦"精测"人生。4月28日,他被中华全国总工会授予"全国五一劳动奖章"荣誉称号,成为此次河南能源唯一获得该殊荣的职工。

找准基点探索"光明"

2008年以前,20岁的李明对煤 矿是陌生的,印象中它的样子是别人口中所说的"粗线条",就是这寥寥数 语却让李明对煤矿有了新的认识,也 让他知道测量工作的责任和意义所 在。当年7月,李明从河南工程学院工 程测量专业毕业后,选择了扎根九里 山矿, 也是自那天起, 李明便明确了 自己矿山测量生涯的基准点——"探 索光明

测量工作是艰辛的,为了及时给 矿井的安全生产提供精准的数据保 障,他经常是每天背着三四十斤的测 量仪器在井下各巷道间来回行走十几公里,一干就是七八个小时。 "差之毫厘,谬以千里"是李

明常常挂在嘴边的一句话,而他就 是在这毫厘之间守护着矿山。作为 矿井工程的"探路者""先行官", 李明和他的同事们要经常在逼仄 的环境中架设仪器,为了给出更加 准确的基准线,他常常是蹲着、跪 着、匍匐着进行测量,记录本上简 单的数据背后是李明在冰冷积水 中冻得发抖的双腿,是他爬过不足 米高的老巷时磨破的胳膊……如 此 16 年,他先后参与百余条巷道 的线路复测、工程精测工作,带头 指导掘进巷道 2.8 万米,贯通巷道

74条,均达到一等贯通精度。

矿井标尺屡创佳绩

巷道在哪儿开挖,走向如何把握, 双向开挖的巷道能否无缝对接,都必 须用精准的数据说话。"身为煤矿测量 一个小小的误差就会导致测量的 偏差,影响巷道的贯穿、空间距离等, 对矿井造成不可弥补的损失,这些问 题在工作中是绝对不允许的。 "谈及测 量工作,李明目光坚定地说。

李明始终坚定"只有苦练才能熟 练,只有熟练才能精准"的信念,工作 之余, 他总会将各种测量仪器抱出来 细究其原理,练习其操作过程,对中、 整平、测量、记录、计算,即使是平时 练习,他也是一丝不苟。井下条件不比地面,为了更好地贴合现场实际, 他还经常自制场景,找一间采光不好 的房间,拉上窗帘还原井下幽暗的环 境,在地面随机放几块砖模拟井下凹 凸不平的底板……对各个测量流程他 都以秒计时,一直练到信手拈来就能 准确无误,真正把技能变成本能。

心心在一艺,其艺必工;心心在 一职,其职必举。多年的练习也成就 了李明的一手绝活: 普通测量人员五 六分钟才能完成仪器安装,而他只需 要一分钟便可轻松完成,对于精确到 秒的角度计算,他心算的速度甚至比

普通人按计算器还要快

2020年10月,李明以打破赛事纪录 的成绩,力压群雄摘得焦作市职业技能大 赛桂冠。载誉而归的他没有就此满足, 2023年3月,他再次来到赛场,在全国行业职业技能竞赛——"华阳杯"第十五届 全国煤炭行业职业技能竞赛上,他以角度 闭合差 -3、距离相对误差 +1 毫米的好成 绩,在矿山测量工赛项中摘得桂冠,多年 的不懈奋斗让李明真正成为矿山测量专业的"标尺"。凭借在工作中的突出表现,李明也获得了"焦煤集团大工匠""河南能源技术标兵""焦作市技术标兵""焦作市五一劳动奖章""河南省五一劳动奖章" '全国五一劳动奖章"等荣誉称号。

精益求精孜孜以求

随着测绘技术日益现代化、智能化, 李明也在与时俱进,更新自己的知识体系 和技术本领,从经纬仪、全站仪、GPS 到 RTK,他无一不通、无一不精。 "他善于思考,勤于动手,不管遇到

什么难题,总能想办法解决,特别是对新 设备、新技术,他主动摸索、认真钻研,总 能用最快的速度、最短的时间理解和掌 "九里山矿副总工程师李磊评价道。

善于把学习成果转化为生产力。李 明不满足于只当一名使用工具的好手,在 工作方法创新方面他也投入了很大精力。 在井下测量方面,李明带头普及使用激光

全站仪,相比使用传统经纬仪更加智能化, 提升了2倍作业效率。同时,他积极推广应 用悬挂棱镜法,大幅提高了导线测量的精 度;摸索出虚拟后视点测量法,有效克服了 巷道机械化掘进受大型设备影响导致通视 条件差的问题,使延伸导线时更加简便;在 地面测量工作中,他还引入了卫星导航定 位测量(GNSS测量),测量精度可达厘米 级,在矿区沉降监测、地籍测量工作中发挥 巨大作用,且精度可靠,不受时间限制,同 时减少施测人员60%,测量和成图效率提 升3倍,提高了测量工作能力。

安全是矿井的生命,是企业发展的 切前提,努力为企业安全生产添砖加瓦更 是李明的核心使命。身为一名测量工,李 明还做好地测防治水隐患排查工作,重新 完善了矿井测量控制系统,建立了主副井 沉降观测台账,对矿井基本控制导线进行 完善和恢复。通过引进新设备,推广新方 法,提高导线测量精度,使矿井贯通平均误 差由 160 毫米降至 90 毫米, 达到行业领 先水平;优化测量控制网,将矿井测量控制 网由30秒级提升至7秒级,达到行业 最高级。

在九里山矿明亮的巷道中,李明已架 设好仪器,镜头前,35岁的他坚定地举目 远望,依稀浮现出自己20岁的模样,却不 再青涩,有着愈加坚定的初心,回望基点, 扭转镜头,一条耀眼的光束射出,李明标定 的方向笔直且清晰。

(蔡宵明)

探"超宽"隐情 防"水害"隐患

山东省煤田地质局物测队隐蔽致灾因素探测创新团队"超宽"工作面施工纪实

夏日骄阳似火,山东省煤田地质 局物测队隐蔽致灾因素探测创新团队 深入内蒙古某煤矿 600 多米的井下, 在宽度约 400 米的"超宽"工作面争 分夺秒地工作着,只为通过先进的技术手段,精准探测长度约 2500 米工作面的富水性,以解"超宽"工作面安 全生产之困,探明"水害"带来的隐蔽 致灾因素,为矿区的安全掘进保驾护

实地初探,直面"超宽"困扰

对于具有丰富隐蔽致灾因素探 测经验的团队而言,在宽度一般为 100-200 米的回采传统工作面施工 已经得心应手, 然而, 随着开采技术 的进步,许多自动化程度高、开采环 境好的煤矿工作面宽度已经超过 300米,"超宽"工作面的构建对矿井地质 物探技术方法及矿井灾害治理工程技 术提出了更高要求。传统的探测方法 在"超宽"工作面不能有效发挥作用。 该团队面临着新的挑战, 要在物探技 术层面进行创新,不断适应在复杂的 "招宽" 工作面进行隐蔽致灾因素探 测的需要

6月下旬,该团队果断出击,进行 了井下实地踏勘。进入工作面,扑面 而来的不仅仅是工作面"超宽"和"超 长",更有巷道积水较深且障碍物密 集等诸多困难,对施工形成了很大干扰。此时,直面"超宽"困扰,高效发挥 团队的专业优势和自主创新能力,攻克"超宽"工作面"水害"探测新技术 成为该团队的重要工作。而精准探明 影响工作面回采的隐伏地质构造及其 水害隐患,建立起矿区安全高效开采

所需的高精度地质保障体系则是此次 施工的重中之重

坚定信心,迎接"超宽"挑战

通过实地踏勘,充分了解了"超 工作面具体情况后,经过精心组 织和谋划,由平均年龄不足 35 岁的 10 名技术人员组成的技术创新团队 奔赴内蒙古矿区井下"超宽"工作面,迎接"超宽"挑战,攻克井下隐蔽致灾 因素探测之困。

施工专用的探测仪器及线缆非 常沉重,全靠技术人员肩挑背扛至工 作地点。团队成员每人负重约30公 斤,沿着 2500 多米长、积水高达 30 厘米且障碍物较密的巷道徒步前进, 到达施工地点需要 1 个多小时。团队

负责人李成帅走在最前面,边走边满怀信 心地鼓励大家:"工作面长且宽,施工条件 复杂艰苦,但是该项目是我队首个"超宽" 工作面探测类项目,是我们团队实施矿山 全生命周期地质服务的标志性项目,必将 实现隐蔽致灾因素探测技术的新突破。对 我们来说既是难得的机遇,也是全新的挑 战,值得我们全力以赴,用地质人的使命 与担当迎接挑战,保质保量完成任务。

该项目的施工地点在煤矿的探采工 作面内, 团队的施工时间只能见缝插针, 一般安排在中班(下午4点到晚上12 点)。首次下井的技术人员克服了恐惧的 心理, 背负沉重的设备到达施工地点时, 已是汗流浃背,但仍然坚守岗位;经验丰 富的老技术人员早已习惯了这种工作强 度,顾不得休息片刻,立即全神贯注地投入 工作。带去当晚餐的面包、火腿肠等食物往往都没顾得上吃,上井后再吃晚饭已是

凝心聚力,探明"水害"隐患

7月,该团队再次进入该煤矿进行施 虽然工作面很长,但他们不放过每一 个探测点的细节;虽然工作面超宽,但是他 们宁可多吃些苦,也要保证采集数据精准 无误。项目经理王家琪反复强调:"施工时 定要严格遵循物探施工技术规范,操作 设备时一定要严格执行操作规程, 铺设电 线电缆时一定要准确到位,做到安全无误, 确保采集数据的质量。

针对"超宽"工作面的特殊地质情况, 该团队连续下井半月。团队充分发挥每个 人的聪明才智,合理分工;选择不同物探方 法采集数据,经过对比分析、多次反复实 验,对掘进期间揭露的实际地质情况进行 综合解释。他们集思广益,确定了最佳的 物探技术手段、合理的施工参数和装置;他 们凝心聚力,最终创新地采用了三维综合 电磁法探测技术,针对工作面顶板岩层富水性异常区垂向分布范围及相对强弱等特 征,对工作面的富水性进行精准探测,查明 "超宽"工作面内的水害隐蔽致灾因素,为安全掘进提供了技术保障。 该团队还构建了"超宽"工作面及顶

板地层电阻率三维数据体,并利用切片技 术实现 X、Y、Z 三个不同方向的切片,精确分析顶板地层的电性分布,并提取各含 水层层位中低阻异常分布,在三维模型中实现了低阻体单独三维空间可视化展示, 为工作面防治水工作的设计、实施提供了 坚实的地质依据。

(赵欣)